Multi-Locus Sequence typing of Treponema pallidum in male patients with genital ulcers in a public STD clinic in South Brazil: a new allele and almost complete macrolide resistance

Leonardo Souza Esteves, Vera Mileide Trivellato Grassi, Grassi Liliane Trivellato, Maria Rita Castilhos Nicola, Marcia Suzana Nunes Silv, Maria Lucia Rosa Rossetti, Mauro Cunha Ramos

https://doi.org/10.1590/SciELOPreprints.9034

Submitted on: 2024-06-01
Posted on: 2024-06-07 (version 1)
(YYYY-MM-DD)
Multi-Locus Sequence typing of *Treponema pallidum* in male patients with genital ulcers in a public STD clinic in South Brazil: a new allele and almost complete macrolide resistance.

* The authors contributed equally for this study.

Key Words: Genotyping, PCR, *Treponema pallidum*, syphilis, diagnostics

Leonardo Souza Esteves, PhD*
ORCID: https://orcid.org/0000-0001-9615-9240
Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil

Vera Mileide Trivellato Grassi, PhD*
ORCID: https://orcid.org/0000-0003-0987-5084
Lutheran University of Brazil (ULBRA), Canoas, Brazil.

Liliane Trivellato Grassi
ORCID: https://orcid.org/0000-0003-0768-943X
PhD student, Biomedical Engineering, Lutheran University of Brazil (ULBRA), Canoas, Brazil.

Maria Rita Castilhos Nicola, MsC
ORCID: https://orcid.org/0000-0003-4399-0799
Sanitary Dermatology Outpatient Unit, State Health Secretariat, Rio Grande do Sul, Brazil

Marcia Susana Nunes Silva, PhD
ORCID: https://orcid.org/0000-0001-8854-582X
DNTech - Development of New Technologies LTDA (FAPERGS/FINEP), Rio Grande do Sul, Brazil.

Maria Lucia Rosa Rossetti, PhD
ORCID: https://orcid.org/0000-0002-9672-9394
Cellular and Molecular Biology Applied to Health; Faculty, Post-Graduate Program, Lutheran University of Brazil (ULBRA), Canoas, Brazil.

Mauro Cunha Ramos, MD, MPH, PhD
ORCID: https://orcid.org/0000-0003-4341-2390
State Health Secretariat, Rio Grande do Sul, Brazil.

* These authors contributed equally for this study.

Maria Lucia Rossetti, PhD
Programa de Pós-Graduação em Biologia Molecular Aplicada à Saúde (PPGBioSaúde), Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil.
FUNDING

The CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior of the Ministry of Education provided a scholarship for doctoral studies of V.M.Grassi through funding CODE 001. The study was funded by the Brazilian Ministry of Health through a Letter of Agreement with Pan-American Health Organization (PAHO) number SCON00400/2019.

Summary

Objective: Considering the absence of data on the molecular epidemiology of Treponema pallidum in Brazil, we aimed at the detection and genotyping of T. pallidum strains and resistance to the macrolide in genital ulcers clinically suggestive of syphilis.

Methods: Man over 18 years old in a public STI clinic were invited to participate. The exudate samples were collected with a dry cotton swab and immersed in 0.9% NaCl solution. The detection of T. pallidum was done by PCR amplification of a 260 bp of the tpp47 gene and the PCR product was analyzed by electrophoresis in 2% agarose gel containing 0.05% ethidium bromide. The positive PCR sample were analyzed by MLST (sequencing of chromosomal loci TP0136, TP0548 and TP0705). The mutation A2058G and A2059G on the 23S rRNA gene was evaluated by nested PCR. The analysis of DNA sequencing was performed using the Bioedit software (Tom Hall, USA). Genotyping was performed using the online platform PubMLST using the Grillová scheme.
Results: All subjects were residents of Porto Alegre and ranged from 19 to 66 years old. Of the 43 samples, 32 were *T. pallidum* PCR positive. Thirty strains were available for genotyping and belonged to either the Clonal Complex SS14-like (73.3%) and the Nichols-like (20%). Three complete MLST profiles were identified (1.3.1, 9.7.3 and 28.7.3), and a new allele (x.x.11) at the locus TP0705 was identified in one sample, the only one sample with quality sequencing did not have the 2058 mutation in the 23S rRNA gene.

Conclusion: Our study identified a genetically diversity in the *T. pallidum* DNA using MLST with allele variants for TP0136, TP0548 and TP0705, including a new allele, the only sample characterized as genotypic susceptible to macrolides. All the others (over 95%) samples presented the A2058G mutation in the 23S rRNA gene, which causes resistance to the macrolides. Introduction of molecular techniques, besides improving local understanding of the syphilis and *T. pallidum* population structure and improving the quality of care.
INTRODUCTION

Syphilis is a sexually transmitted infection (STI) of polymorphic evolution caused by the bacterium *Treponema pallidum* subspecies *pallidum*. The disease may occur asymptptomatically, but when presenting clinical signs, mucocutaneous lesions are frequent in the primary and secondary phases. Neurological and cardiovascular systems are the most affected, but any bodily system can be severely harmed leading to sequelae and even death. Transmission from the infected mother to the child can occur at any stage of pregnancy, leading to abortion, disease or even death of the newborn. In addition to its direct consequences, the disease is a behavioral risk marker for HIV infection and other STIs. It is known that the presence of mucocutaneous lesions increases the transmission of HIV, either by the presence of inflammatory target cells or by the breakage of the mucocutaneous barrier.¹,²

The World Health Organization (WHO), based on prevalence data from 2009 to 2016, estimated a total of 376.4 million curable STIs, of which 6.3 million were syphilis.³ Although an increase in incidence is identified in high-income countries, the impact of the disease is much greater in middle and low-income countries. Although acquired syphilis belongs to a category of diseases which require compulsory reporting since 2010, underreporting of unknown magnitude is admitted. According to the Epidemiological Bulletin of Syphilis of the Ministry of Health of Brazil, published in 2021, the rate of detection of acquired syphilis increased from 33.9 cases per 100,000 inhabitants in 2015 to 74.2 cases per 100,000 inhabitants in 2019. In the period from 2010 to 2018, the incidence rate of congenital syphilis increased from 2.4 to 8.5 cases per 1,000 live births.⁴
The identification of *T. pallidum* is difficult, since it is non-cultivable with standard culture methods. Diagnosis of syphilis is made by a combination of clinical and laboratory findings, which vary according to the stage of the disease. Diagnostic methods are divided into direct and serological tests. Among the direct ones are dark-field microscopy, direct immunofluorescence, and immunohistochemistry. In clinical practice, though, the diagnosis is presumptive. Serological treponemal tests (e.g., FTA-Abs) and non-treponemal tests (e.g., VDRL, RPR) are used. In the last decade, different polymerase chain reaction (PCR) molecular techniques that detect *T. pallidum* genetic material have been used both for diagnosis and for genotyping. Moreover, DNA sequencing is increasingly used and allows studies of the genetic diversity, dynamics of transmission in different populations, its virulence, and its patterns of resistance to antibiotics. More precisely, genotyping using the multilocus sequence typing (MLST) method on the chromosomal loci TP0136, TP0548 and TP0705 allowed better discrimination among *T. pallidum* strains from different regions of the world and was used to elaborate a database that allows epidemiological analyses (https://pubmlst.org/organisms/treponema-pallidum). Different loci characterize distinct alleles, and its combination defines the allelic profile and the sequence type (ST). A clonal complex gathers the strains of *T. pallidum* with the allelic or ST identical profiles. In addition to the loci analyzed by MLST, an analysis of the 23S rRNA gene can complement the identification of mutations (A2058G or A2059G) that are related to resistance to macrolides. Despite these advances, standardized molecular tests are still scarce for the definitive diagnosis of active *T. pallidum* infection, and there is a particular lack of diagnostic tools with low cost and with high sensitivities and specificities.
To our best knowledge, Brazilian publications on molecular tests for syphilis are restricted to the diagnosis of *T. pallidum* infection, and do not include genotypic studies. In the present study, exudate samples were obtained from genital ulcers suggestive of syphilis (primary or secondary) from male patients seen at a public STI clinic. The main objective was to increase knowledge about local molecular epidemiology of *T. pallidum* circulating in Brazil.

MATERIALS AND METHODS

Men over the age of 18 years with genital ulcers considered to be a manifestation of primary or secondary syphilis who were being treated at the STD Unit of the Outpatient Clinic of Sanitary Dermatology (ADS) in the city of Porto Alegre, in South Brazil, were invited to participate. The exudate samples of the lesions were collected between July 2019 and March 2020, using dry cotton swabs that were immersed in 0.9% sodium chloride solution, stored at 4°C and sent to the Molecular Biology Laboratory of the Lutheran University of Brazil (ULBRA), where they were processed and analyzed. DNA extraction was realized by using the PureLink® Genomic Kit (Invitrogen®, Thermo Fisher Scientific, Carlsbad, California, USA) according to the manufacturer recommendations by using an aliquot of 200 μL of biological samples. After DNA release, samples were stored at -18°C until the next phase of our study. The detection of *T. pallidum* DNA was performed by using the *primers* KO3 (5’-GAAGTTTTGTCCCAGTTGCTTCTT-3’) and KO4 (5’-CAGAGCCATCAGCCCTTTCA-3’) which amplify a 260 bp segment of the *tpp47* gene as described previously.21 Briefly, a mixture was prepared with a buffer 10X, 1.5 mM MgCl₂, 200 μM of each dNTPs, 25 pmol of each primer and 1.25 Units of
the enzyme *Taq platinum* DNA polymerase (Invitrogen, Thermo Fisher Scientific, Carlsbad, California, USA). Initial denaturation was performed at 95°C for 2 min, followed by denaturation at 95°C for 20 s, at 62°C for 20 s and at 72°C for 20 s for 35 cycles, with a final extension at 72°C for 5 min. Amplification was performed using the Thermocycler MJ Research PTC 96 (Bioer Technology, Hangzhou, China). PCR product was analyzed by electrophoresis in 2% agarose gel containing 0.05% ethidium bromide and visualized under ultraviolet light. *T. pallidum* DNA obtained from positive samples and ultrapure water controls were used at each PCR reaction as positive and negative controls, respectively.

The samples which were positive for *T. pallidum* by PCR were then analyzed for molecular typing utilizing the MLST method on the chromosomal loci TP0136, TP0548 and TP0705 as described previously\(^1\). The presence of the mutation A2058G and A2059G on the 23S rRNA gene responsible for macrolide resistance was evaluated by nested PCR. The first-round mixture consisted of 10X buffer; 2.0 mM MgCl\(_2\); 200 μM of each dNTPs; 1.2 μL primer at 10 pmol; and 1.25 U of *Taq platinum* DNA polymerase (Invitrogen, Thermo Fisher Scientific, Carlsbad, California, USA) and 10 μL of DNA. Initial denaturation was performed at 95°C for 5 min, followed by 30 s at 95°C, 30 s at 60°C, 2 min at 72°C for 35 cycles, and a final extension at 72°C for 7 min. In the second round of PCR, 5 μL of the amplified product was incorporated in a mixture with the same composition as that of the first round. Initial denaturation was performed at 95°C for 5 min, followed by denaturation for 30 s 95°C, 30 s at 62°C, 90 s at 72°C, for 35 cycles, and a final extension at 72°C for 7 min. All amplifications were performed on the MJ Research PTC 96 thermocycler (Waltham, Massachusetts, USA).
Sequencing of DNA was performed by ACTGene Molecular Analysis Inc (Porto Alegre, Brazil) using the final PCR products of each sample. The chromatograms were visualized and trimmed using Chromas software (Technelysium Pty Ltd) and the construction of contigs, alignment and analysis of sequences was carried out using the Bioedit software (Tom Hall, Raleigh, North Carolina, USA). For genotyping analysis using the scheme including TP0136, TP0548, and TP0705 loci (MLST Grilová), the platform public database for molecular typing and microbial genome diversity (PubMLST) available at https://pubmlst.org/organisms/treponema-pallidum was used. For resistance related sequencing analysis, the reference sequence annotation corresponding to positions 2058 and 2059 in rRNA gene of *Escherichia coli* (accession no. V00331) available at GenBank was used.

This project was approved by the Ethics Committee of the School of Public Health of the state of Rio Grande do Sul under number 3,232,889, in accordance with Resolution 466 of the National Health Council (2012).

RESULTS

A total of 43 participants were recruited with the age ranging from 19 to 66 years old. All of them were residents of the metropolitan area of Porto Alegre, South Brazil. In 32 (74.4%) of the 43 DNA samples analyzed, *T. pallidum* specific sequence was detected, which at least one locus of MLST scheme was successful sequencing for 30/32 (93.7%), same proportion obtained for 23S rRNA gene sequencing. Quality sequencing of TP0705 was obtained in 22 samples, as well as for TP0136 and TP0548, varying the combination of successfully sequenced locus among samples.
Three allele variants were identified for TP0136, two for TP0548 and three for TP0705.

A new allele for TP0705 was identified in the only sample characterized as genotypic susceptible to macrolides, and it was called here allele 11, differing for allele 3 at loci position 270 (C270T). Three other samples presented heterozygous peak (two peaks), at position 154 for TP0136, 14 for TP0548 and 265 for TP0705 (Figure 1). The results of T. pallidum typing, the identified alleles, genotypic resistance profile and the clonal complex are presented in table 1.

![Chromatogram of sample 25 shown the new allele variant called here of 11, characterized by an SNV at position 270 (C→T) using the allele 3 (most similar sequence) as reference.](image1.png)

![Chromatograms of three samples showed heterozygous peak for TP0136 locus at position 154 (C and T), TP0548 at position 14 (G and A) and TP0705 at position 265 (G and A). The alleles used as reference are the most similar sequence observed in PubMLST database.](image2.png)

Figure 1: New allele for TP0705 and three heterozygous peaks for TP0136, TP0548 and TP0705 loci.

A) Chromatogram of sample 25 shown the new allele variant called here of 11, characterized by an SNV at position 270 (C→T) using the allele 3 (most similar sequence) as reference.

B) Chromatograms of three samples showed heterozygous peak for TP0136 locus at position 154 (C and T), TP0548 at position 14 (G and A) and TP0705 at position 265 (G and A). The alleles used as reference are the most similar sequence observed in PubMLST database.
Table 1: Genotyping of *T. pallidum* by Multi-Locus Sequence Typing (MLST) of studied samples.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>TP0136</th>
<th>TP0548</th>
<th>TP0705</th>
<th>23S rRNA1</th>
<th>MLST2</th>
<th>ST3</th>
<th>Clonal Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>R</td>
<td>1.3.1</td>
<td>1</td>
<td>SS14-like</td>
</tr>
<tr>
<td>7</td>
<td>nd</td>
<td>nd</td>
<td>1</td>
<td>R</td>
<td>x.x.1</td>
<td>-</td>
<td>SS14-like*</td>
</tr>
<tr>
<td>8</td>
<td>9+</td>
<td>7</td>
<td>1</td>
<td>R</td>
<td>9.7.x</td>
<td>-</td>
<td>Nichols-like*</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>R</td>
<td>1.3.x</td>
<td>-</td>
<td>SS14-like*</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>nd</td>
<td>1</td>
<td>R</td>
<td>1.x.1</td>
<td>-</td>
<td>SS14-like*</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>R</td>
<td>1.3.1</td>
<td>1</td>
<td>SS14-like</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>3</td>
<td>nd</td>
<td>R</td>
<td>1.3.x</td>
<td>-</td>
<td>SS14-like*</td>
</tr>
<tr>
<td>13</td>
<td>nd</td>
<td>3</td>
<td>nd</td>
<td>R</td>
<td>x.3.x</td>
<td>-</td>
<td>SS14-like*</td>
</tr>
<tr>
<td>14</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>R</td>
<td>-</td>
<td>-</td>
<td>nd</td>
</tr>
<tr>
<td>15</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>R</td>
<td>-</td>
<td>-</td>
<td>nd</td>
</tr>
<tr>
<td>16</td>
<td>28</td>
<td>7</td>
<td>3</td>
<td>R</td>
<td>28.7.3</td>
<td>-</td>
<td>Nichols-like</td>
</tr>
<tr>
<td>17</td>
<td>nd</td>
<td>nd</td>
<td>1</td>
<td>R</td>
<td>x.x.1</td>
<td>-</td>
<td>SS14-like*</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>R</td>
<td>1.3.1</td>
<td>1</td>
<td>SS14-like</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>3+</td>
<td>nd</td>
<td>R</td>
<td>1.3.x</td>
<td>-</td>
<td>SS14-like*</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>3</td>
<td>nd</td>
<td>R</td>
<td>1.3.x</td>
<td>-</td>
<td>SS14-like*</td>
</tr>
<tr>
<td>21</td>
<td>nd</td>
<td>7</td>
<td>3</td>
<td>R</td>
<td>x.7.3</td>
<td>-</td>
<td>Nichols-like*</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>R</td>
<td>9.7.3</td>
<td>26</td>
<td>Nichols-like</td>
</tr>
<tr>
<td>23</td>
<td>nd</td>
<td>nd</td>
<td>3</td>
<td>Nd</td>
<td>x.x.3</td>
<td>-</td>
<td>nd</td>
</tr>
<tr>
<td>25</td>
<td>nd</td>
<td>nd</td>
<td>114</td>
<td>S</td>
<td>x.x.11</td>
<td>-</td>
<td>nd</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>3</td>
<td>nd</td>
<td>R</td>
<td>1.3.x</td>
<td>-</td>
<td>SS14-like*</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>R</td>
<td>1.3.1</td>
<td>1</td>
<td>SS14-like</td>
</tr>
<tr>
<td>29</td>
<td>28</td>
<td>7</td>
<td>3</td>
<td>R</td>
<td>28.7.3</td>
<td>-</td>
<td>Nichols-like</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>R</td>
<td>1.3.1</td>
<td>1</td>
<td>SS14-like</td>
</tr>
<tr>
<td>31</td>
<td>nd</td>
<td>nd</td>
<td>1</td>
<td>R</td>
<td>x.x.1</td>
<td>-</td>
<td>SS14-like*</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>R</td>
<td>1.3.1</td>
<td>1</td>
<td>SS14-like</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>nd</td>
<td>1</td>
<td>Nd</td>
<td>1.x.1</td>
<td>-</td>
<td>SS14-like*</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>nd</td>
<td>1+</td>
<td>R</td>
<td>1.x.1</td>
<td>-</td>
<td>SS14-like*</td>
</tr>
<tr>
<td>36</td>
<td>28</td>
<td>7</td>
<td>3</td>
<td>R</td>
<td>28.7.3</td>
<td>-</td>
<td>Nichols-like</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>3</td>
<td>nd</td>
<td>R</td>
<td>1.3.x</td>
<td>-</td>
<td>SS14-like*</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>R</td>
<td>1.3.1</td>
<td>1</td>
<td>SS14-like</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>R</td>
<td>1.3.1</td>
<td>1</td>
<td>SS14-like</td>
</tr>
<tr>
<td>42</td>
<td>nd</td>
<td>3</td>
<td>1</td>
<td>R</td>
<td>x.3.1</td>
<td>-</td>
<td>SS14-like*</td>
</tr>
</tbody>
</table>

1 23S rRNA gene encoding resistance to macrolide antibiotics: S = sensitive, R = resistant with mutation A2058G.

2 Allelic profiles based on TP0136, TP0548 and TP0705 loci sequences.

3 ST: Sequence Type. According to the PubMLST database for *Treponema pallidum subsp. pallidum*
* Clonal complex classified by approximation

† New allele

‡ alleles with heterozygous peak in one position of the sequence

nd = not determined
Sequence types (ST), which are attributed for fully characterized haplotypes (three MLST loci), was obtained for 11 samples, and the profile 1.3.1 (ST 1) was the most frequent (8/11; 72.7%). The profile 28.7.3 was not yet attributed a ST in PubMLST platform. The samples that had at least one locus successfully sequenced were classified in a clonal complex by approximation; this classification was based in the number of sequenced isolates containing the allele(s) stored in the PubMLST database (supplementary table 1). Two clonal complexes of strains were identified: 6/30 isolates (20%) were classified as Nichols-like and 22/30 (73.3%) as SS14-like. Two samples that had only the TP0705 locus successfully sequenced did not have a clonal complex determined, which one was characterized as allele 3, and the other had a new allele determined (allele 11).

Regarding resistance related mutations, out of the 30 samples that were adequately characterized, only one did not have the A2058G mutation in the 23S rRNA gene, and therefore classified as susceptible. Two samples had not quality sequencing for this gene.

DISCUSSION

Our study detected *T. pallidum* DNA in approximately two thirds of the studied samples. Regarding profiles with unknown alleles, twelve allelic profiles were found. They belonged to the two best known clonal complexes: SS14-like and Nichols-like. A new allele was identified in this study. It occurred in the two samples not classified in a clonal complex (x.x.3 and x.x.11). The haplotype containing this allele with had only TP0705 locus characterized. It is known that this locus can share identical alleles among strains from SS14 and Nichols-clades, what makes it difficult
to assign a clonal complex. The three isolates presenting two peaks in some position of the allele sequence presented a partial allele match when analyzed by PubMLST. Some hypotheses arise to explain these heterozygous peaks in an haploid organism genome. As the different affinities of DNA polymerase for dideoxynucleotides (ddNTP), leads to differences in the rate of ddNTP incorporation and is also influenced by the upstream and downstream sequences - an effect known as "sequence context-dependent incorporation of dideoxynucleotide”, it may results in sequencing errors. Also, contamination in sample manipulation, or even an intra-strain heterogeneity, may result in an ongoing adaptive diversification. All but one of identified DNA of T. pallidum presented the A2058G mutation in the 23S rRNA gene, which provides resistance to the macrolide class of antibiotics. The same clonal complexes identified in the samples of this study (Clonal Complex SS14 or to the Nichols-like (20%). have been found in other studies, including Argentina. Three MLST fully characterized profiles of T. pallidum were found (1.3.1, 9.7.3 and 28.7.3). The MLST profile 9.7.3 was also found in studies from Czech Republic and France. This allelic profile corresponds to the Genotype U3U6 based on the SBMT that was also found in Argentina and the subtype "g" ECDCT – TP0548, which was also found in Switzerland, France, Italy, and the United Kingdom. In turn, in Argentina, the most found subtype was the "f" ECDCT - TP0548. The haplotype 28.7.3 which was not yet assigned a ST in the PubMLST database, was classified as Nichols-like complex clonal based on the genomic multi-centric collaborative study carried out by Beale et al.. This profile was observed in isolates from Australia and United Kingdom between the years 2015 and 2019. FALTA REFERENCIA
Although the ineffectiveness of azithromycin for the treatment of syphilis has been repeatedly demonstrated in clinical studies\(^1\), it is important to mention that over 95% of the samples tested belong to *T. pallidum* resistant strains resistant. Our findings corroborate the ones of Grillová\(\text{et al.}\)\(^{26,27}\) and Vrbova \(\text{et al.}\)\(^{17}\) which demonstrated high and increasing proportion of this mutation. Similarly, resistance to macrolides was identified in the United Kingdom\(^{28}\), France\(^{29}\), and Cuba.\(^{30}\) By the other hand, Vaulet \(\text{et al.}\)\(^{27}\) identified a much lower proportion of resistance in Argentina, a country that borders to our state.

The usefulness of PCR for the diagnosis of primary and secondary syphilis, as well as sensitivity and specificity of the method, have been extensively studied.\(^{34}\) Facts that could explain the occurrence of negative samples: 1) some patients did not actually have active syphilis; 2) being self-limited manifestations, the number of microorganisms present in the lesions reduces in time; 3) the use of topical and systemic antibiotics before the consultation is also common.\(^6\)

The diagnosis of syphilis is based on clinical aspects which have very low sensitivity and specificity. Positive serological results not always mean an active infection, since these results might also indicate a treated past infection.\(^{35}\) In addition, negative serological results can occur early in the course of disease, even in the presence of primary lesions. These limitations of the current diagnostic tools, hence, justify improvement and standardization of molecular techniques We believe that the in-house technique, which has been tested by the typing process, our study may have paved the way for the development of affordable PCR techniques which are in great need in settings were the incidence of syphilis, which is the case of our country.
The small sample size may be considered a limitation of our study, since it prevented the study associations of different genotypes with demographics, sexual practices, or geographic origin of participants. The SARS-COV2 epidemic hindered the enrollment of participants, since it had severe impact on health seeking behavior, reducing, or even impeding patients from getting medical assistance in our clinic. Hence, the development of studies with larger sample sizes, or even the establishment of surveillance systems can provide valuable information for the control of syphilis.

Our study detected *T. pallidum* DNA in approximately two thirds of the sample. Accounting profiles with unknown alleles, twelve allelic profiles were found. They belonged to the two best known clonal complexes: SS14-like and Nichols-like. A new allele was identified in this study. It occurred in the two samples not classified in a clonal complex (x.x.3 and x.x.11). The haplotype containing this allele with had only TP0705 locus characterized it is known that this locus can share identical alleles among strains from SS14 and Nichols-clades, what makes it difficult to assign a clonal complex. The three isolates presenting two peaks in some position of the allele sequence, consequently presented a partial allele match when analyzed by PubMLST. Some hypotheses arise to explain these heterozygous peaks in an haploid organism genome. As the different affinities of DNA polymerase for dideoxynucleotides (ddNTP), leads to differences in the rate of ddNTP incorporation and is also influenced by the upstream and downstream sequences; an effect known as “sequence context-dependent incorporation of dideoxynucleotide”, it may results in sequencing errors. Also, contamination in sample manipulation, or even an
intra-strain heterogeneity, may result in an ongoing adaptive diversification.25 Also but one of identified DNA of \textit{T. pallidum} presented the A2058G mutation in the 23S rRNA gene, which provides resistance to the macrolide class of antibiotics. The same clonal complexes identified in the samples of this study (Clonal Complex SS14 or to the Nichols-like (20\%). have been found in other studies, including Argentina.12,16,17,27 Three MLST fully characterized profiles of \textit{T. pallidum} were found (1.3.1, 9.7.3 and 28.7.3). The MLST profile 9.7.3 was also found in studies from Czech Republic and France.17,30 This allelic profile corresponds to the Genotype U3U6 based on the SBMT that was also found in Argentina26 and the subtype "g" ECDCT – TP054816, which was also found in Switzerland, France, Italy, and the United Kingdom.11,15,27,29,32 In turn, in Argentina, the most found subtype was the "f" ECDCT - TP0548.26 The haplotype 28.7.3 which was not yet assigned a ST in the PubMLST database, was classified as Nichols-like complex clonal based on the genomic multi-centric collaborative study carried out by Beale et al.3 This profile was observed in isolates from Australia and United Kingdom between the years 2015 and 2019.

Although the ineffectiveness of azithromycin for the treatment of syphilis has been repeatedly demonstrated in clinical studies1, it is important to mention that over 95\% of the samples tested belong to \textit{T. pallidum} resistant strains resistant. Our findings corroborate the ones of Grillováet al.26,27 and Vrbovaet al.17 which demonstrated high and increasing proportion of this mutation. Similarly, resistance to macrolides was identified in the United Kingdom28, France29, and Cuba.30 By the other hand, Vauletet al.27 identified a much lower proportion of resistance in Argentina, a country that borders to our state.
The usefulness of PCR for the diagnosis of primary and secondary syphilis, as well as sensitivity and specificity of the method, have been extensively studied.34 Facts that could explain the occurrence of negative samples: 1) some patients did not actually have active syphilis; 2) being self-limited manifestations, the number of microorganisms present in the lesions reduces in time; 3) the use of topical and systemic antibiotics before the consultation is also common.6

The diagnosis of syphilis is based on clinical aspects which have very low sensitivity and specificity. Positive serological results not always mean an active infection, since these results might also indicate a treated past infection.35 In addition, negative serological results can occur early in the course of disease, even in the presence of primary lesions. These limitations of the current diagnostic tools, hence, justify improvement and standardization of molecular techniques We believe that the in house technique, which has been tested by the typing process, our study may have paved the way for the development of affordable PCR techniques which are in great need in settings were the incidence of syphilis, which is the case of our country.

The small sample size may be considered a limitation of our study, since it prevented the study associations of different genotypes with demographics, sexual practices, or geographic origin of participants. The SARS-COV2 epidemic hindered the enrollment of participants, since it had severe impact on health seeking behavior, reducing, or even impeding patients from getting medical assistance in our clinic. The development of studies with larger sample sizes or the establishment of surveillance systems can provide valuable information for the control of syphilis.

ACKNOWLEDGEMENTS
Authors thank the participants for their altruistic collaboration. Also, appreciate the support of the professionals and the direction of the STI Unit of the Public Health Dermatology Outpatient Clinic of Porto Alegre (Ambulatório de Dermatologia Sanitária) of the Health Secretariat of the State of Rio Grande do Sul.

CONTRIBUTORS

MCR, VMTG, LSE, MLRR e MS and carried out the study conception and design. LSE carried out bioinformatics sequencing analyzes and genotyping. MRCN participated in data collection and management. LTG carried out reference organizing. All authors provided comments and edits and approved the final draft ahead of submission.

FUNDING

The CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior of the Ministry of Education provided a scholarship for doctoral studies of V.M.T.Grassi through funding CODE 001. The study was funded by the Brazilian Ministry of Health through a Letter of Agreement with Pan-American Health Organization (PAHO) number SCON00400/2019.

COMPETING INTERESTS

Competing interests. None declared.
REFERENCES

Supplementary table 1: Clonal complex of incomplete genotypic profiles based on number of samples present in PubMLST database.

<table>
<thead>
<tr>
<th>Profile searched in the database</th>
<th>n of samples SS14-like</th>
<th>n of samples Nichols-like</th>
<th>n of samples without CC assignment</th>
<th>CC considered in this study</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.x</td>
<td>463</td>
<td>0</td>
<td>1</td>
<td>SS14-like</td>
</tr>
<tr>
<td>1.x.1</td>
<td>639</td>
<td>0</td>
<td>10</td>
<td>SS14-like</td>
</tr>
<tr>
<td>9.7.x</td>
<td>0</td>
<td>38</td>
<td>0</td>
<td>Nichols-like</td>
</tr>
<tr>
<td>x.3.1</td>
<td>477</td>
<td>0</td>
<td>4</td>
<td>SS14-like</td>
</tr>
<tr>
<td>x.3.x</td>
<td>482</td>
<td>0</td>
<td>6</td>
<td>SS14-like</td>
</tr>
<tr>
<td>x.7.3</td>
<td>0</td>
<td>41</td>
<td>3</td>
<td>Nichols-like</td>
</tr>
<tr>
<td>x.x.1</td>
<td>683</td>
<td>0</td>
<td>20</td>
<td>SS14-like</td>
</tr>
<tr>
<td>x.x.3</td>
<td>22</td>
<td>86</td>
<td>7</td>
<td>nd</td>
</tr>
</tbody>
</table>

CC = Clonal Complex
This preprint was submitted under the following conditions:

- The authors declare that they are aware that they are solely responsible for the content of the preprint and that the deposit in SciELO Preprints does not mean any commitment on the part of SciELO, except its preservation and dissemination.

- The authors declare that the necessary Terms of Free and Informed Consent of participants or patients in the research were obtained and are described in the manuscript, when applicable.

- The authors declare that the preparation of the manuscript followed the ethical norms of scientific communication.

- The authors declare that the data, applications, and other content underlying the manuscript are referenced.

- The deposited manuscript is in PDF format.

- The authors declare that the research that originated the manuscript followed good ethical practices and that the necessary approvals from research ethics committees, when applicable, are described in the manuscript.

- The authors declare that once a manuscript is posted on the SciELO Preprints server, it can only be taken down on request to the SciELO Preprints server Editorial Secretariat, who will post a retraction notice in its place.

- The authors agree that the approved manuscript will be made available under a Creative Commons CC-BY license.

- The submitting author declares that the contributions of all authors and conflict of interest statement are included explicitly and in specific sections of the manuscript.

- The authors declare that the manuscript was not deposited and/or previously made available on another preprint server or published by a journal.

- If the manuscript is being reviewed or being prepared for publishing but not yet published by a journal, the authors declare that they have received authorization from the journal to make this deposit.

- The submitting author declares that all authors of the manuscript agree with the submission to SciELO Preprints.