Viruses and amino acids in pandemics and epidemics
Maria Cristina Pedrazini

https://doi.org/10.1590/SciELOPreprints.8892

Submitted on: 2024-05-09
Posted on: 2024-05-17 (version 1)
(YYYY-MM-DD)

The moderation of this preprint received the endorsement of:
Francisco Groppo (ORCID: https://orcid.org/0000-0002-8513-773X)
Comunication / Letter to the editor / Health Science

Title: Viruses and amino acids in pandemics and epidemics.

Author:
Maria Cristina PEDRAZINI 1,2 - DMD, MSc, PhD, Professor.
https://orcid.org/0000-0002-7649-6626

1. Researcher - Department of Biosciences – Faculdade de Odontologia de Piracicaba (FOP) – Universidade Estadual de Campinas (UNICAMP) - Piracicaba – São Paulo State – Brazil.
2. Invited Professor - Division of Dental Science - São Leopoldo Mandic Research Center - Campinas – São Paulo State - Brazil

MAILING ADDRESS:
FACULDADE DE ODONTOLOGIA DE PIRACICABA (FOP) – UNIVERSIDADE ESTADUAL DE CAMPINAS (UNICAMP)
DEPARTAMENTO DE BIOCIÊNCIAS - FARMACOLOGIA, ANESTESIOLOGIA E TERAPÊUTICA
Av. Limeira, 901 - Piracicaba - SP, BR - 13414-903
55(19) 2106-5275 / www.fop.unicamp.br

Correspondence to:
Dr. Maria Cristina Pedrazini
E-mail: m860702@dac.unicamp.br
DECLARATIONS

Ethics approval:
Not applicable.

Consent to participate:
Not applicable.

Consent for publication:
Not applicable.

Availability of data and material:
Data used in the discussion were found in peer-reviewed journals and previously published articles.

Competing interests:
The author declare no competing interests.

Funding:
This study did not receive funding.

Code availability:
Not applicable.

Authors' contributions:

MCP - researcher responsible for the conceptualization, bibliographic review, writing and article submission.

The author read and approved the final draft.

Author's Adress:

Maria Cristina Pedrazini

PIRACICABA SCHOOL OF DENTISTRY - FOP - UNICAMP
DEPARTAMENTO DE FARMACOLOGIA, ANESTESIOLOGIA E TERAPÊUTICA
Av. Limeira, 901 - Areião, Piracicaba - SP, CEP: 13414-903
Phone: 55(19) 2106-5275
Email: m860702@dac.unicamp.br
RESUMO
Os números de hoje mostram efetivamente que estamos na Terceira Guerra Mundial. Não é um país contra o outro, mas cada país contra um vírus diferente e, por vezes, o mundo contra um vírus. O Brasil está agora no meio de uma epidemia de dengue e muitas pesquisas estão em andamento, em vários países, na busca de novos alvos terapêuticos em diferentes vírus, tanto para a terapia antiviral quanto para a produção de vacinas. Alguns vírus são dependentes de aminoácidos para a formação de suas proteínas e o equilíbrio de dois aminoácidos, a lisina e a arginina, talvez seja uma possível arma também contra os arbovírus. Até que sejam efetuados mais estudos, o equilíbrio arginina/lisina deve ser observado mais atentamente em pacientes portadores de vírus. Seria interessante manter pelo menos um equilíbrio na dieta consumindo alimentos ricos em lisina e evitando alimentos ricos em arginina como o chocolate, os amendoins, os cereais, os cajus e as amêndoas pelas pessoas que sofrem de doenças virais durante a fase de multiplicação, ou seja, nos primeiros dias de uma infeção viral, baseada no ciclo viral. Esse protocolo também pode ser indicado diante dos arbovírus.

ABSTRACT
Today's numbers actually show that we are in World War III. It's not one country against another, but each country against a different virus, and sometimes the world against a virus. Brazil is in the midst of a dengue epidemic, and research is going on in different countries to find new therapeutic targets in different viruses, both for antiviral therapy and for vaccine production. Some viruses depend on amino acids for the formation of their proteins, and the balance of two amino acids, lysine and arginine, may also be a possible weapon against arboviruses. Pending further studies, the arginine/lysine balance in patients with viruses should be monitored more closely. It would be interesting to maintain at least a balance in the diet by consuming foods rich in lysine and avoiding foods rich in arginine, such as chocolate, peanuts, cereals, cashews and almonds, for people suffering from viral diseases during the multiplication phase, i.e. the first few days of a viral infection, based on the viral cycle. This protocol can also be indicated for arboviruses.

KEY WORDS: arbovirus; antiviral therapy; arginine; virus; lysine.
Dear Editor,

Today's figures effectively show that we are in World War III. It's not one country against another, but each country against a different virus and sometimes, the world against one virus.

In recent decades, several infectious diseases have been observed, including severe acute respiratory syndrome coronavirus (SARS-CoV) and swine flu (H1N1). The deadliest virus emerged in 2019, spreading throughout the world, bringing fears, doubts and impotence in the face of SARS-CoV-2, a new coronavirus that causes COVID-19 (Melano et al, 2021).

There have been other pandemics, but COVID-19 was unprecedented, putting science at risk with an immense race against time to find therapies, medicines and vaccine developments whose results will only be seen in the long term. Research is underway, in several countries, in the search for new therapeutic targets in different viruses, both for antiviral therapy and for vaccine production (Grimes et al, 2021; Pedrazini & da Silva, 2021).

Among these potential therapies, in 2021, Melano and colleagues discussed the balance of two amino acids, lysine and arginine, as a possible weapon against the virus. In most enveloped viruses, such as SARS-CoV and H1N1, the stages of viral entry into the host cell include binding, endocytosis or fusion of the envelope, internalization of the capsid core with subsequent decapsulation, and finally injection of the genetic material to begin the replication stages, where amino acids have been implicated as adjuvants (Ryu, 2017; Melano et al, 2021).

These same amino acids, L-lysine and L-arginine, have already been studied in other viruses and positive results, both in signs and symptoms and in viral titers, have been observed with arginine depletion in the herpesvirus family, such as cytomegalovirus, herpes simplex virus, roseovirus and herpes zoster virus (Becker et al, 1967; Garnett, 1975; LoBue et al, 2019; 2020; Pedrazini & da Silva, 2021).

Researchers have had promising results with the suppression of arginine in viral manifestation. In some of these studies, arginine depletion alone was enough to interfere with the viral cycle, while in others, lysine was added as a supplement and, due to its competitive antagonism with arginine, the results were enhanced (Tankersley, 1964; Becker et al, 1967; Thein & Hurt, 1984).
Other viruses have also shown positive results with arginine depletion, such as polyomavirus (simian virus - 40), morbillivirus (measles virus), Marrek's disease, hepatitis C, reovirus, adenovirus and vaccinia (Archard & Williamson, 1971; Grimes et al, 2021).

What could be another antiviral weapon seems not to be properly exploited in other viruses but is already being investigated in some cases of tumors. Sindhu Rajashekar and collaborators from the JSS Academy of Higher Education & Research discussed in 2023 the importance of amino acids as essential nutrients for the survival of all cell types, being an opportunistic/alternative fuel in cancers auxotrophic for specific amino acids. Consequently, amino acid restriction has been used as a therapeutic strategy in these cancers (Sindhu et al, 2023).

The same was discussed by Pedrazini and collaborators, stating that some viruses are dependent on amino acids for the protein formation that are important in the development of genetic material, such as for the formation of the capsid core, and without the necessary availability of the amino acid arginine, the viral offspring may not be virulent because they are empty particles, without genetic material or naked particles, with structural flaws in the capsid, leaving the genetic material exposed to enzymes in the core, such as DNases (Pedrazini et al, 2022).

Also in the war against viruses, an outbreak of monkeypox appeared shortly after COVID-19. This zoonosis is caused by the monkeypox virus, genus Orthopoxvirus, belonging to the Poxviridae family (Kaler et al, 2022).

The Vaccinia virus which causes human smallpox and possibly cowpox also belongs to this family. Since the suppression of arginine showed positive results in the expression and virulence of the vaccinia virus, which belongs to the same family as the monkeypox virus (Archard & Williamson, 1971), studies could be carried out using that amino acids and monkeypox virus.

About other viruses, WHO data showed that Brazil registered close to 3 million cases of dengue in 2023 and epidemiological surveys continue to show, also in 2024, that with the torrential summer rains, there is a new explosion in dengue cases in this country (Alves L, 2024).

In 2024, The Brazilian Ministry of Health estimates that there will be more than 2 million cases of dengue fever by March 2024. Of the total of 2,010,896 probable cases, 682
have resulted in death. This number could rise, as another 1,042 deaths are still under investigation (Peduzzi & Laboissière, 2024)

The dengue virus belongs to the flavivirus family and is classified as an arbovirus, transmitted by Aedes aegypti mosquitoes. Four serotypes are known: DENV 1, 2, 3 and 4. The first symptoms of dengue are high fever, usually high (39 to 40°C / 102 to 104°F) with sudden onset and symptoms such as headache, arthralgia, myalgia, adynamia, retro-orbital pain, presence or absence of rash and/or itching. Anorexia, nausea, vomiting and diarrhea can be observed for 2 to 6 days. Some patients may progress to severe forms of the disease and may show warning signs, especially when the fever subsides, such as drowsiness and/or irritability, intense and continuous abdominal pain, persistent vomiting, postural hypotension and/or lipothymia, painful hepatomegaly, a drop in diuresis, a sudden drop in body temperature or hypothermia, a sudden increase in hematocrit, a sudden drop in platelets and respiratory discomfort. These symptoms precede hemorrhagic events such as gingivorrhrea, hematuria, metrorrhagia, epistaxis, petechiae and melena. The determining factor in dengue hemorrhagic fever is plasma leakage expressed through hemoconcentration, hypoalbuminemia and/or cavitary effusions. Amid this epidemic, patients with a fever of less than seven days, the evolution of which cannot be predicted, should seek medical treatment to prevent the disease from worsening. The standard treatment is rest, oral hydration with water, juices, saline and teas, fever control with antipyretics without acetylsalicylic acid (ASA), in some cases intravenous saline and monitoring of the signs and symptoms described above with follow-up blood tests (WHO, 2023).

The Butantan Institute, a center linked to the São Paulo State Health Department, has released the first results of the phase 3 clinical trial of its dengue vaccine. The immunizer, made with the four attenuated viruses, in a single dose, prevented the disease in 79.6% of those vaccinated over two-years, protecting both those who had already had dengue and those with no previous infection. A total of 16,235 volunteers were recruited from all over Brazil, aged between 2 and 59, at 16 research centers and will be followed up for a full five years (Kallás et al, 2024)

Currently, the immunizer to be applied in the country has been supplied by the Japanese Takeda laboratory. The Qdenga® immunizer has similar efficacy and is indicated for individuals aged 4 to 60 and is administered in 2 doses, with an interval of 3 months between them. The 2nd dose is essential for the maximum effectiveness of the immunizer and should
only not be given if the patient has an allergic reaction after the 1st dose. The vaccine has been approved by the European Medicines Agency (EMA) and shows high efficacy against virologically confirmed cases of dengue and severe dengue in clinical studies on 4 - to 16-year-olds living in endemic areas (Angelin et al, 2023).

Unlike the Dengvaxia® vaccine, until then the only dengue vaccine available in Brazil, manufactured by the French laboratory Sanofi Pasteur and recommended only for those who have already had dengue (Thomas, 2023), Qdenga can be administered to patients who have never had contact with the disease or who have already been infected at some point (Angelin et al, 2023).

An observation by Thomas & Yoon published in 2019 in the Human Vaccines and Immunotherapeutics Journal is indeed a fact. "A deeper understanding of the induction, kinetics, and contributions to safety and protection of homotypic, transient heterotypic, and long-term heterotypic immune responses is needed. Multivalent replicon vaccines run the theoretical risk of suffering immunodominance and immune interference in the recipient, likely necessitating a more iterative development approach to assess individual infectivity and immunogenicity. Given that clinically relevant immune responses may change over time following natural infection or vaccination, the efficacy and risk of a vaccine should be considered" (Thomas & Yoon, 2019).

Concerning the antiviral therapies already applied to so many viruses, it is not yet available for the dengue virus. Stanford University (USA) and Pioneer Science, linked to the DOR Institute for Research and Education (IDOR), have announced the start of pre-clinical tests on an antiviral to combat the dengue virus. Victor Gueddes, a post-doctoral researcher in genetics and a fellow of Ciência Pioneira, reveals that this study is an offshoot of research into antivirals against hepatitis. The same compounds were then tested on other viruses, including those from the arbovirus family (dengue, zika and chikungunya), showing positive results in in vitro tests. (Bryson et al, 2010; Carbinatto B, 2024).

Returning to amino acids as a therapeutic possibility, L-arginine depletion can act similarly to an antiviral, such as acyclovir, in the case of some herpesviruses such as HHV-1,6,7, interfering in the production of proteins that form the nucleic acid and the capsid (Pedrazini et al, 2022). Arginine depletion has also shown promising results in reducing viral titers of the hepatitis virus (Izzo, 2007)
Since the same antiviral, researched for the treatment of viral hepatitis, is also showing positive results in arboviruses (Bryson et al, 2010; Carbinatto B, 2024), it would be interesting to observe whether the depletion of arginine used in the hepatitis virus (Izzo, 2007), would also result in an interference in the virulence of arboviruses, as well as the antiviral studied, which acts on the hepatitis virus and has shown promising results in arboviruses (Bryson et al, 2010; Carbinatto B, 2024).

L-lysine, an arginine depletor, associated with the antiviral penciclovir, enhances the drug's action without pharmacological damage (Meira, 2019). Other researchers are also focusing on the study of lysine. Its potential as an antiviral therapy has shown promising results, showing that alone or in nanopolymer form it would be an effective antiviral against a wide variety of viruses (Stagi et al, 2022).

The nutritional characteristics of the host may or may not favor the perpetuation of these infectious agents and, in the light of studies on the amino acids present in food, it was concluded that foods rich in lysine could favor viral control together with a reduced supply, either in food or through supplements, of the amino acid arginine, which is essential to the virus (Pedrazini et al, 2022).

In the meantime, and agreement with Melano et al. (2021), until more studies are carried out, the arginine/lysine balance should be observed more closely, and it would be interesting to at least maintain a balance in the diet by consuming foods rich in lysine and avoiding foods rich in arginine such as chocolate, peanuts, cereals, cashews, and almonds for those suffering from viral diseases, during the multiplication phase, i.e. in the first days of a viral infection based on the viral cycle, also in arboviruses.
REFERENCES


This preprint was submitted under the following conditions:

- The authors declare that they are aware that they are solely responsible for the content of the preprint and that the deposit in SciELO Preprints does not mean any commitment on the part of SciELO, except its preservation and dissemination.

- The authors declare that the necessary Terms of Free and Informed Consent of participants or patients in the research were obtained and are described in the manuscript, when applicable.

- The authors declare that the preparation of the manuscript followed the ethical norms of scientific communication.

- The authors declare that the data, applications, and other content underlying the manuscript are referenced.

- The deposited manuscript is in PDF format.

- The authors declare that the research that originated the manuscript followed good ethical practices and that the necessary approvals from research ethics committees, when applicable, are described in the manuscript.

- The authors declare that once a manuscript is posted on the SciELO Preprints server, it can only be taken down on request to the SciELO Preprints server Editorial Secretariat, who will post a retraction notice in its place.

- The authors agree that the approved manuscript will be made available under a Creative Commons CC-BY license.

- The submitting author declares that the contributions of all authors and conflict of interest statement are included explicitly and in specific sections of the manuscript.

- The authors declare that the manuscript was not deposited and/or previously made available on another preprint server or published by a journal.

- If the manuscript is being reviewed or being prepared for publishing but not yet published by a journal, the authors declare that they have received authorization from the journal to make this deposit.

- The submitting author declares that all authors of the manuscript agree with the submission to SciELO Preprints.